Deep Learning and Satellite Images for Photovoltaic Power Forecasting: A Case Study

> Luiz Henrique Buzzi Lucas Weihmann <u>Pablo Andretta Jaskowiak</u>

Graduate Program in Electronic Systems Engineering (PPGESE) Joinville Technological Center (CTJ) Federal University of Santa Catarina (UFSC)

CBIC 2023 - October, 09. Salvador, Bahia.

Outline

- 1. Introduction
- 2. Datasets: ground and satellite
- 3. Deep Learning Based Approach
- 4. Results
- 5. Final remarks

Introduction

- Electricity usage is increasing fast: +50% of total energy by 2050
 High demand for clean (renewable) energy resources
- Solar energy is one of the most promising resources
- Photovoltaic generation
 - Strongly affected by meteorological factors (rain, fog, ...)
- Forecasting of photovoltaic power generation allows for a better
 - Integration of energy resources
 - Management of grid infrastructure

Introduction

Depending on the goal, different problems / possibilities emerge

- Forecasting Horizons
 - Short-term (intra-hour) forecasts: 30min and 60min
- Datasets
 - Satellite data from GOES-16 for forecasts
 - Ground data for actual Global Horizontal Irradiance (GHI)
 - Training and validation
- Deep Learning Approaches taking as input / output
 Satellite images / Ground GHI observations

Ground and Satellite

Ground data from Laboratório Fotovoltaica

UFSC - Florianópolis

Location of the solarimetric station

- Ground data from Laboratório Fotovoltaica
 - UFSC Florianópolis
- Only Global Horizontal Irradiance (GHI) is considered
 - Target variable used only as desired value in training
 - Allows for agnostic forecasts
 - Highly correlated with photovoltaic power output (0.97)

- Satellite Images from GOES-16
- Images from Channel 2 of the Advanced Baseline Imager

- Bright images
 - High reflectance \rightarrow Low GHI
- Dark images
 - Low reflectance \rightarrow High GHI

(a) 8:00 am, GHI 9.75 W/m^2

(b) 8:00 am, GHI 701 W/m^2

(c) 12:30 pm, GHI 31.3 W/m^2

(d) 12:30 pm, GHI 1199 W/m^2

- Dataset comprehends the years of 2018 and 2019
- Correlation between GHI (ground) and Reflectance (Satellite)

¹¹ Deep Learning Based Approach

Architecture and parameters

Deep Learning Approach

Neurons: {64, 128, 256, 512, 1024}

GHI Forecasting with Satellite data

Evaluation

For evaluation, data was split into three sets (stratified by month)

- Data from 2018
 - 70% for training set
 - 30% for validation set
- Data from 2019
 - Not employed before, was used as test set
- Evaluation metric
 - relative Root Mean Squared Error (rRMSE)

Horizon (min)	# Convolutions	# Filters	Kernel Size	# Layers	Dropout	# Neurons	rRMSE (%)	Model #
	2	16	5	1	0.45	64	15.6	M01
	2	32	4	1	0.45	1024	15.8	M02
30	2	32	5	1	0.30	64	15.8	M03
	2	16	3	2	0.45	64	15.8	M04
	2	16	3	2	0.30	64	15.8	M05
	2	32	5	1	0.45	256	17.2	M06
	2	32	3	2	0.15	256	17.2	M07
60	1	32	3	5	0.15	256	17.5	M08
	1	16	5	1	0.30	64	17.5	M09
	1	32	5	1	0.45	512	17.5	M10

19

Results for top models, considering both horizons

Future work directions

Final Remarks

- Importance of photovoltaic power generation forecasting
 - Allows for widespread adoption and better grid integration
- Short term forecasting of Global Horizontal Irradiance (GHI)
 30 and 60 minutes
- Satellite images provide reasonable short forecasts
 - Slightly worse results than ground data (Pelisson et al. 2020)
- We consider only images
 - No cloud segmentation or integration with ground data
 - No calendar, hour information, etc

Final Remarks: Future Work

Consider different architectures as candidates

- Implement competitors (no source codes available)
- Incorporate different data sources into the models
 - Ground data
 - Hour information
 - Season
- Add solar zenith angle correction and verify its influence

Questions?

Thank you for your attention. Glad to answer any questions.

pablo.andretta@ufsc.br

With thanks to:

