Comparing Correlation Coefficients as Dissimilarity Measures for Cancer Classification in Gene Expression Data

> Pablo A. Jaskowiak* Ricardo J. G. B. Campello

Computer Science Department Institute of Mathematics and Computer Science – ICMC University of São Paulo – São Carlos - Brazil

Outline

Introduction

Correlation Coefficients

Experimental Setup

Results

- Research focus is switching
 - From sequencing
 - To the understanding of how genomes are functioning

- Low level characterization of diseases
 - Cancer

- Microarray technology
 - Expression level measurement for thousands of genes
 - Genomic picture of the system for a given state, e.g.,
 - A patient with cancer
 - A healthy patient

- Based on microarray data
 - Build classifiers or induce models
 - Predict the state of previously unseen samples
 - Cancer classification

- Different classifiers have been adopted, e.g.,
 - SVMs, NN, LDA, *k*NN
- In this work we are particularly interested in
 - k-Nearest Neighbors classifier (kNN)
 - Simple
 - Has shown good results in cancer classification problems
 - Straightforward to implement
 - Even with more complex classifiers is still in use (Parry et al., 2010)

- What is close?
 - Different proximity measures (similarity or dissimilarity)
 - Different results
- Proximity is a key concept for kNN classifier
- Classifier depends on the definition of a proximity measure

- Considering gene expression data
 - Trend similarity concept
 - Similarity in shape, rather than absolute differences
 - Proximity measures typically employed
 - Pearson correlation coefficient
 - Spearman correlation coefficient
 - Euclidean distance

Motivation

- kNN sensitive to proximity choice
- Other correlation coefficients available
- Parry et al., 2010 evaluated some proximity measures for kNN
 - No correlation coefficient though
- Comparison of different correlation coefficients
 - Measures sensitive to magnitudes of the values
 - Rank-based measures
 - Measures that are sensitive to both

Correlation Coefficients

Correlation Coefficient	Symbol	Sensibility	Time Complexity
Pearson	ρ	Magnitudes	O(n)
Jackknife	ϱ	Magnitudes	$O(n^2)$
Goodman-Kruskal	γ	Ranks	O(n log n)
Kendall	τ	Ranks	O(n log n)
Spearman	ρ	Ranks	O(n log n)
Rank-Magnitude	r	Ranks and Magnitudes	O(n log n)
Weighted Goodman -Kruskal	Ŷ	Ranks and Magnitudes	$O(n^2)$

Experimental Setup

- 35 publicly available gene expression cancer datasets (Souto et al., 2008)
 - 14 double channel datasets (cDNA)
 - 21 single channel datasets (Affymetrix)
- Regarding the number of neighbors k, we used four values (Dudoit et al., 2000)
 - 1NN, 3NN, 5NN and 7NN
- Seven correlation coefficients + Euclidean distance
- Proximity measures evaluated by their LOOCV error

Souto et al., 2008. Clustering cancer gene expression data: a comparative study. BMC Bioinformatics. Dudoit et al., 2000. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Amer. Stat. Assoc.

- Great variability
 - Different datasets
- In particular datasets
 - Great differences among correlation coefficients

• Considering 1NN results

Dataset	e	ρ	ϱ	γ	τ	ρ	r	Ŷ
West-2001	30.6	16.3	14.3	6.1	8.2	8.2	8.2	16.3
Bitner-2000	34.2	13.2	13.2	18.4	21.1	18.4	15.8	29.0

• Considering 1NN results

Dataset	e	ρ	ϱ	γ	τ	ρ	r	Ŷ
West-2001	30.6	16.3	14.3	6.1	8.2	8.2	8.2	16.3
Bitner-2000	34.2	13.2	13.2	18.4	21.1	18.4	15.8	29.0

26

• Considering 1NN results

Dataset	e	ρ	ϱ	γ	τ	ρ	r	Ŷ
West-2001	30.6	16.3	14.3	6.1	8.2	8.2	8.2	16.3
Bitner-2000	34.2	13.2	13.2	18.4	21.1	18.4	15.8	29.0

- We compared eight different proximity measures for cancer classification regarding gene expression data
 - 7 correlation coefficients + Euclidean distance
- Considering different datasets
 - Large differences were found among correlation coefficients

- cDNA data
 - Euclidean distance is not a good alternative
 - Goodman-Kruskal and Kendall
 - Good alternatives to the commonly employed Spearman
- Affymetrix data
 - Rank-Magnitude appears as a promising alternative to
 - Pearson
 - Euclidean distance
 - Rank-based measures displayed similar results among themselves

- In real application scenarios
 - Exploratory analysis is seemingly the best choice
 - When there is no difference among measures
 - Employ the least computationally expensive one
- As future work
 - For particular datasets great differences were observed
 - Investigate possible relations between characteristics of the datasets and the results produced by the correlations

Acknowledgements

pablo@icmc.usp.br

