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Abstract. An important analysis performed in gene expression data is
sample classification, e.g., the classification of different types or subtypes
of cancer. Different classifiers have been employed for this challenging
task, among which the k -Nearest Neighbors (kNN) classifier stands out
for being at the same time very simple and highly flexible in terms of
discriminatory power. Although the choice of a dissimilarity measure is
essential to kNN, little effort has been undertaken to evaluate how this
choice affects its performance in cancer classification. To this extent,
we compare seven correlation coefficients for cancer classification using
kNN. Our comparison suggests that a recently introduced correlation
may perform better than commonly used measures. We also show that
correlation coefficients rarely considered can provide competitive results
when compared to widely used dissimilarity measures.
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1 Introduction

Microarray technology enables expression level measurement for thousands of
genes in a parallel fashion. The genomic picture obtained with the technology
can help to discriminate among different classes of samples, which are usually
associated with distinct types of cancer. Sample classification is not only essential
to successful cancer diagnosis, but also to help choosing the best treatment for
different patients, minimizing collateral effects of the treatment [19]. A wide
range of classifiers have been applied to this task [2, 8, 12]. Among these, k -
Nearest Neighbors (kNN) [5] is of main interest for our work, once it has shown
quite good results in cancer classification problems [2, 8, 15]. In addition, kNN is
fairly simple and straightforward to implement, which makes it very appealing.

In brief, kNN has two parameters that must be set or adjusted, which can,
in turn, directly affect the classification outcomes. The first one is the number
of neighbors (k), while the second one is the dissimilarity measure that induces
the neighboring relationships. Parameter k and the effect of its choice in cancer
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classification have been explored in some works [12, 13]. In what concerns the
dissimilarity measure, on the other hand, Euclidean distance and Pearson corre-
lation have been widely adopted as rules of thumb [2, 8, 12]. Adding to the fact
that these measures are not the only alternatives to quantify dissimilarities in
gene expression data, kNN can be quite sensitive to the dissimilarity choice [1].
In spite of that, little effort has been made to try establishing guidelines to
the choice of a proper dissimilarity measure in this particular context. Parry et
al. [13] evaluated three different dissimilarities with kNN. The evaluation, how-
ever, was based on a few datasets and did not consider any correlation coefficient,
regardless their common use in gene expression data.

In the present work, to the best of our knowledge, we present the first compar-
ison of correlation coefficients as dissimilarity measures for cancer classification
using kNN. We evaluate seven correlation coefficients on 35 publicly available
datasets, from both single and double channel microarrays [16]. Our investiga-
tion is motivated by sensitivity differences exhibited by the measures, such as,
robustness to outliers. In addition, the correlations considered in our analysis
take into account different characteristics of the data, as will be discussed later.

The remainder of this paper is organized as follows. In Section 2 the cor-
relation coefficients considered for comparison are reviewed. In Section 3 the
experimental setup is presented, whereas in Section 4 the results obtained are
discussed. Finally, in Section 5 the main conclusions of our work are addressed.

2 Correlation Coefficients

When considering gene expression data and comparing any two objects (samples
in our case), it turns out that these objects should be regarded as similar if
they exhibit similarity in shape, rather than in absolute differences from their
values [19]. Correlation coefficients have been widely used in this context, since
they capture such a kind of similarity. In this sense, any two samples can be
seen as sequences of real values a and b, in the form a = (a1, . . . , an) and
b = (b1, . . . , bn), for which a correlation coefficient can be directly applied. Such
coefficients produce values between -1 and 1. High absolute values indicate a
stronger relationship between sequences, while values close to 0 indicate non-
correlated sequences. Bearing the above considerations in mind, in the following
we review the seven correlation coefficients considered in our comparison.

2.1 Pearson - ρ

The Pearson correlation [14] allows the identification of linear correlations be-
tween two sequences of numbers. It is described in (1), where ā and b̄ stand for
the means of the sequences in hand. Although widely used in gene expression
data, Pearson is sensitive to the presence of outliers and may not be robust when
both sequences do not come from an approximately normal distribution [19, 10].

ρ(a,b) =

�n

i=1
(ai − ā)(bi − b̄)

�

�n

i=1
(ai − ā)

2

�

�n

i=1
(bi − b̄)

2
(1)
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2.2 Jackknife - �

Jackknife correlation [10] is defined in order to minimize the effect that single
outliers may have in the final correlation value. This is achieved by removing one
value at a time from both sequences. Jackknife is defined in (2), where ρi(a,b)
stands for the Pearson correlation between a and b with their ith values removed.

�(a,b) = min{ρ1(a,b), . . . , ρn(a,b), ρ(a,b)} (2)

2.3 Goodman-Kruskal - γ

The Goodman-Kruskal correlation [9] takes into account only the ranks of se-
quences a and b, and is defined according to the number of concordant (S+),
discordant (S

−
), and neutral pairs in the sequences. A pair is said to be concor-

dant if the same relative order applies in the two sequences (ai < aj and bi < bj
or ai > aj and bi > bj). Similarly, discordant pairs are those in which the inverse
relative order applies (ai < aj and bi > bj or ai > aj and bi < bj). All other
pairs are deemed as neutrals. Goodman-Kruskal is defined by Equation (3).

γ(a,b) =
S+ − S

−

S+ + S
−

(3)

2.4 Kendall - τ

The Kendall correlation [11] is based on the same concepts previously defined
for Goodman-Kruskal. The difference between these two measures is due to the
fact that Kendall, defined in (4), takes into account all the n(n − 1)/2 pairs in
its normalization term, reaching its extrema only in the absence of neutrals.

τ(a,b) =
S+ − S

−

n(n− 1)/2
(4)

2.5 Spearman - ρ̂

The Spearman correlation [17] can be seen as a particular case of the Pearson
correlation, provided that the values of both a and b are replaced with their
ranks in the respective sequences. By doing such a replacement, the Spearman
correlation can also be defined by (1). As only the ranks of the sequences are con-
sidered, Spearman is more robust to the presence of outliers than Pearson [19].

2.6 Rank-Magnitude - r

The Rank-Magnitude correlation [4] was introduced as an asymmetric measure,
for cases in which one of the sequences is composed by ranks and the other by
real values. The correlation is defined by (5), with R(ai) denoting the rank of the
ith element of sequence a. In (5), rmin =

�n

i=1
(n+1− i)bi and rmax =

�n

i=1
ibi.
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Value bi is the ith element of the sequence, which is obtained by rearranging
sequence b so that it gets sorted in ascending order.

r̂(a,b) =
2
�n

i=1
R(ai)bi − rmax − rmin

rmax − rmin
(5)

As previously mentioned, Rank-Magnitude is asymmetric. To be used in cases
in which both sequences are constituted of real values, the measure must be sym-
metrized. Any mention to the Rank-Magnitude correlation in the remainder of
this paper refers to its symmetric version, given by r(a,b) = (r̂(a,b)+r̂(b,a))/2.

2.7 Weighted Goodman-Kruskal - γ̂

The Weighted Goodman-Kruskal correlation [4] takes into account ranks and
magnitudes of both sequences by considering that concordance and discordance
are both a matter of degree. The complete Weighted Goodman-Kruskal formu-
lation is presented in [4] and is omitted here due to space restrictions.

3 Experimental Setup

We compared different variants of the kNN classifier, each of which employ-
ing one of the correlation coefficients described in Section 2. All correlation
coefficients were adapted as dissimilarities in the form: Dissimilarity(a,b) =
1− correlation(a,b). For completeness, we also included the Euclidean distance
(represented by letter ‘e’) in our comparison. Regarding kNN parameter k, we
considered four values during our evaluation: 1 (1NN), 3 (3NN), 5 (5NN) and
7 (7NN). These values were chosen based on the work of Dudoit et al. [8], in
which the authors show that for small sample cancer classification values of k

smaller than 7 are usually preferred. Each kNN variant was evaluated by its
generalization capability (error rates), which was estimated using Leave One
Out Cross Validation (LOOCV). It is worth noticing that the choice of error
estimators in the case of small sample sizes is still under debate [3, 7].

To evaluate each one of the 32 kNN variants considered we used a set of pub-
licly available benchmark datasets proposed in [16]. Briefly, this benchmark set
encompass 35 microarray datasets from cancer gene expression experiments and
comprehend the two flavors in which the technology is generally available: single
channel (21 datasets) and double channel (14 datasets) [19, 18]. Hereafter we re-
fer to single channel microarrays as Affymetrix and double channel microarrays
as cDNA, since the data was collected using either of these technologies [16].
Detailed information about these datasets can be obtained in [16].

Finally, to provide reassurance about the validity of our results, we used the
Friedman and Nemenyi statistical tests (with a 95% confidence level), which are
more appropriate when comparing multiple classifiers on multiple datasets [6].
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4 Results

Once we are dealing with two different microarray technologies, i.e., cDNA and
Affymetrix, we chose to analyze the results obtained for each technology inde-
pendently. In Fig. 1 and 2 we present classification error boxplots for each one
of the 32 kNN variants in cDNA and Affymetrix datasets respectively.

Considering cDNA datasets (Fig. 1), the largest variabilities were found with
Euclidean distance (e), which showed the worse results among all compared
measures. It is interesting to note that the use of Jackknife (�) provided some
decrease in variability when compared to Pearson (ρ) (except for 5NN). Regard-
ing the rank-based correlation coefficients, Goodman-Kruskal (γ), Kendall (τ),
and Spearman (ρ̂) showed comparable results, regardless of the value of k used.
These results are quite interesting and show that rank-based measures rarely
used in gene expression data, such as, Goodman-Kruskal (γ) and Kendall (τ),
can provide competitive results when compared to the more commonly used
Spearman (ρ̂). Considering Rank-Magnitude (r), comparable results were ob-
served in comparison to rank-based correlations.

0

5

10

15

20

25

30

35

40

1NN

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r 
(%

)

0

5

10

15

20

25

30

35

40

45

3NN
c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r 
(%

)

0

5

10

15

20

25

30

35

40

45

50
5NN

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r 
(%

)

0

5

10

15

20

25

30

35

40

45

7NN

c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r 
(%

)

� � � � �� � ��� � � � � �� � ���

� � � � �� � ���� � � � �� � ���

Fig. 1. cDNA datasets - boxplots showing classification errors obtained when compar-
ing kNN with different correlation coefficients (Euclidean distance also included).

The results obtained for Affymetrix datasets are shown in Fig. 2. All mea-
sures produced outliers but the Euclidean distance (e). These outliers can, to
some extent, be justified by the large number of classes present in some datasets.
In this sense, the observed outliers approximate the errors that would be found
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with a majority voting classifier, i.e., a classifier that assigns each unlabeled sam-
ple to the majority class observed in the training data. Regardless of the value
of k, Weighted Goodman-Kruskal (γ̂) displayed the largest variability among
the compared dissimilarity measures. Considering the rank-based correlations,
Goodman-Kruskal (γ), Kendall (τ), and Spearman (ρ̂) showed comparable re-
sults. It is interesting to note that the commonly used Euclidean distance (e),
Pearson (ρ) and Jackknife (�) performed slightly worse than rank-based correla-
tions. Rank-Magnitude correlation (r) displayed the lowest variabilities among
the compared measures considering 5NN and 7NN. This correlation also per-
formed well for 1NN and 3NN, showing better results when compared to the
commonly employed Pearson (ρ) and Euclidean distance (e).
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Fig. 2. Affymetrix datasets - boxplots showing classification errors obtained when com-
paring kNN with different correlation coefficients (Euclidean distance also included).

Fig. 1 and Fig. 2 provide an overview but hide some interesting results.
In order to elucidate such cases, we also present results for each individual
dataset considering only 1NN classifier1, as shown in Table 1. In west-2001 and
ramaswamy-2001 datasets, for which the commonly used Euclidean distance (e)
and Pearson (ρ) led to larger error rates, the use of rank-based measures and
Rank-Magnitude (r) can decrease their errors in almost 25%. Considering bitner-

2000, the use of Pearson (ρ) and Jackknife (�) led to a difference of almost 20%
in error when compared to the Euclidean distance (e). It is important to note

1 Results concerning the other values of k are omitted due to space restrictions.
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that, in some datasets, e.g., nutt-2003-v1, v2 and v3, the Euclidean distance (e)
can provide better results when compared to the other measures.

Table 1. 1NN classification errors (%) for all evaluated dissimilarity measures.
Shades of gray indicate relative performance of the dissimilarities (columns) for each
dataset (rows). The lighter the cell, the lower the error for the respective dataset.

c
D

N
A

e ρ � γ τ ρ̂ r γ̂

alizadeh-2000-v1 19.1 21.4 21.4 23.8 23.8 23.8 23.8 23.8

alizadeh-2000-v2 0.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6

alizadeh-2000-v3 17.7 19.4 19.4 14.5 14.5 16.1 19.4 14.5

bittner-2000 34.2 13.2 13.2 18.4 21.1 18.4 15.8 29.0

bredel-2005 12.0 18.0 18.0 18.0 18.0 18.0 16.0 20.0

chen-2002 9.5 6.7 7.3 9.5 9.5 8.9 6.7 9.5

garber-2001 24.2 19.7 19.7 21.2 21.2 21.2 19.7 22.7

khan-2001 0.0 0.0 0.0 10.8 12.1 10.8 1.2 10.8

lapointe-2004-v1 37.7 37.7 31.9 26.1 26.1 27.5 34.8 27.5

lapointe-2004-v2 38.2 40.9 32.7 26.4 25.5 26.4 26.4 30.0

liang-2005 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

risinger-2003 33.3 28.6 26.2 31.0 31.0 33.3 28.6 33.3

tomlins-2006 21.2 16.4 16.4 20.2 20.2 20.2 20.2 18.3

tomlins-2006-v2 23.9 19.6 20.7 25.0 25.0 23.9 21.7 23.9

A
ff
y
m

e
t
r
ix

armstrong-2002-v1 8.3 2.8 1.4 1.4 1.4 1.4 0.0 6.9

armstrong-2002-v2 11.1 4.2 5.6 4.2 5.6 5.6 4.2 9.7

bhattacharjee-2001 14.3 13.3 13.8 7.9 6.4 6.4 8.4 8.9

chowdary-2006 1.9 2.9 2.9 3.9 4.8 3.9 2.9 3.9

dyrskjot-2003 20.0 17.5 17.5 20.0 22.5 20.0 20.0 15.0

golub-1999-v1 6.9 4.2 2.8 8.3 8.3 8.3 2.8 5.6

golub-1999-v2 8.3 5.6 4.2 8.3 8.3 8.3 4.2 6.9

gordon-2002 1.7 2.2 2.2 0.0 0.0 0.0 0.0 0.0

laiho-2007 13.5 24.3 24.3 10.8 10.8 10.8 18.9 10.8

nutt-2003-v1 42.0 68.0 64.0 66.0 66.0 68.0 58.0 64.0

nutt-2003-v2 32.1 53.6 46.4 50.0 57.1 57.1 39.3 57.1

nutt-2003-v3 31.8 45.5 50.0 45.5 40.9 40.9 45.5 40.9

pomeroy-2002-v1 32.4 38.2 35.3 17.7 17.7 17.7 32.4 17.7

pomeroy-2002-v2 23.8 28.6 21.4 26.2 23.8 23.8 23.8 28.6

ramaswamy-2001 34.2 27.4 22.6 24.7 26.3 25.8 18.4 90.5

shipp-2002-v1 22.1 22.1 15.6 10.4 10.4 9.1 6.5 22.1

singh-2002 23.5 26.5 23.5 22.6 23.5 23.5 19.6 21.6

su-2001 15.5 11.5 10.3 10.3 8.1 9.8 5.2 11.5

west-2001 30.6 16.3 14.3 6.1 8.2 8.2 8.2 16.3

yeoh-2002-v1 2.0 0.4 0.4 9.3 10.5 8.9 3.6 17.3

yeoh-2002-v2 25.8 23.8 21.4 40.7 38.3 38.3 26.6 77.8

e ρ � γ τ ρ̂ r γ̂

Finally, the statistical tests suggest that for Affymetrix datasets, Rank-
Magnitude was statistically superior to Pearson, when considering 1NN. Still
concerning Affymetrix datasets, both Rank-Magnitude and Jackknife were sta-
tistically superior to Euclidean distance, when considering 7NN. Regarding the
results for cDNA datasets, no statistically significant differences were found.

5 Conclusions

We presented a comparison of seven correlation coefficients for cancer clas-
sification with kNN. Although no correlation performed best in all datasets,
some interesting results were found. First of all, we showed that there are com-
petitive alternatives to Euclidean distance and Pearson in both cDNA and
Affymetrix datasets. Considering only Affymetrix data, the recently proposed
Rank-Magnitude is, in some cases, statistically superior to Euclidean distance
and Pearson, common choices in gene expression analysis. Regarding rank-based
correlations, our results suggest that Goodman-Kruskal and Kendall are possi-
ble alternatives to the more commonly used Spearman. As in individual datasets
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large differences were found with different correlations, in real applications an
exploratory analysis considering different measures is seemingly the best choice.

As future work, it would be interesting to investigate possible relations be-
tween characteristics of the datasets and the results produced by the correlations
coefficients in particular cases, e.g., west-2001, where greater differences among
results from different coefficients were observed.

Acknowledgments. The authors would like to acknowledge the Brazilian re-
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