A COMPARATIVE STUDY ON THE USE OF CORRELATION COEFFICIENTS FOR REDUNDANT FEATURE ELIMINATION

Pablo A. Jaskowiak* Ricardo J. G. B. Campello Thiago F. Covões Eduardo R. Hruschka

Computer Science Department Institute of Mathematics and Computer Science – ICMC University of São Paulo – São Carlos - Brazil

Introduction

- Simplified Silhouette Filter
- Correlation Coefficients

- Empirical Evaluation
- Conclusions

Introduction

- Irrelevant and redundant features
 - Feature Selection
- Possible approaches
 - Wrapper
 - Embedded
 - **Filter**

Introduction

- Simplified Silhouette Filter SSF (Covões et al., 2009)
 - No critical user-defined parameters
 - Clustering-Based
- Correlated features
 - Clustered together
 - Eliminates redundant features

Covões, T. F., Hruschka, E. R., de Castro, L. N., dos Santos, A. M. "A cluster-based feature selection approach" in Lecture Notes in Artificial Intelligence, v. 5572, 168-176, Springer, 2009

Simplified Silhouette Filter

Clustering-Based approach

k-medoids

k-medoids limitation

 \square k must be determined a priori

Simplified Silhouette (Hruschka et al., 2006)

Hruschka, E. R., Campello, R. J. G. B., de Castro, L. N., Evolving Clusters in Gene-Expression Data, Information Sciences, v. 176, n. 13, p. 1898-1927, 2006.

Simplified Silhouette Filter

- Multiple runs of k-medoids
 - Different numbers of groups
 - Multiple runs for each number considered
- Features selected from best partition
 - SSF1 medoid from each group
 - SSF2 medoid from each group +

feature less correlated with its medoid

Simplified Silhouette Filter

A similarity measure must be defined

Correlation in this case

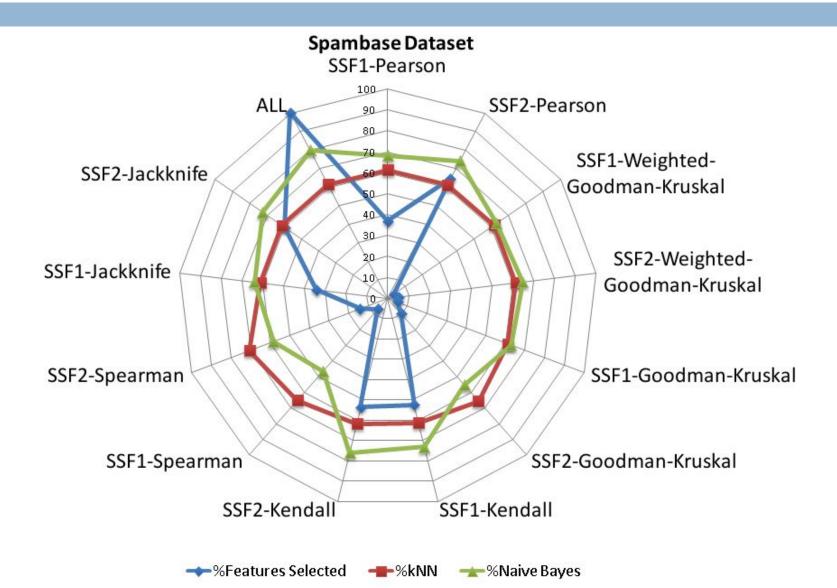
Similarity choice

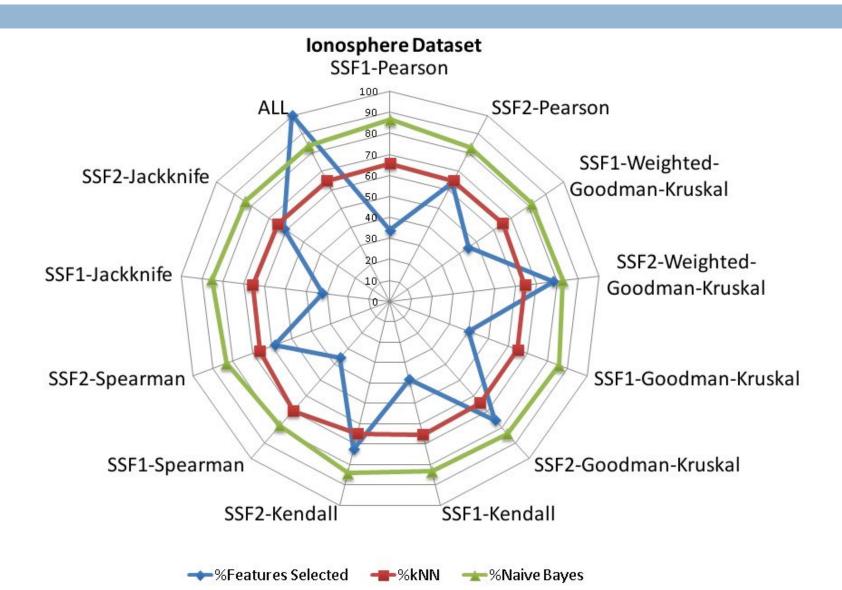
- Impact in clustering algorithms
- Impact in features selected

Correlation Coefficients

Six different measures

- Pearson
- Jackknife
- Spearman
- Kendall
- Goodman-Kruskal
- Weighted Goodman-Kruskal


Five datasets considered


Dataset	# Objects	# Features	# Classes
lonosphere	351	34	2
Pima	768	8	2
Spambase	4601	57	2
Wisconsin	683	9	2
Yeast	205	20	4

Classifiers considered

- 🛛 kNN
- Naïve Bayes

- Evaluation based on mean accuracies obtained
 - Stratified 10-fold cross-validation
 - Feature selection performed only on training set
- Number of features selected

- Considering SSF1
 - Same number of features selected
 - Pearson and Kendall
 - Pearson and Jackknife
 - Similar accuracies accuracies obtained
 - Spearman and Kendall
 - Pearson and Jackknife
- Considering SSF2
 - Similar accuracies obtained
 - Goodman-Kruskal and Weighted Goodman-Kruskal

Conclusions

- Considering all datasets
 - No particular correlation outperformed the others
- In some datasets interesting results were found
 - Smaller subsets
 - Better accuracies
- Correlations not commonly used in feature selection
 - Better results in some cases
- In particular studies a preliminary analysis may be interesting

Acknowledgements

Brazilian Research Agencies CNPq and FAPESP

Questions? Pablo Andretta Jaskowiak

pablo@icmc.usp.br

Computer Science Department Institute of Mathematics and Computer Science – ICMC University of São Paulo – São Carlos - Brazil

